PASADENA, Calif.--Quasars--now known to be compact halos of matter that surround the massive black holes of distant galaxies--were once thought to be stars in our own galaxy. Now, Maarten Schmidt, who showed that quasars are thousands of millions of light-years away from Earth, has been named one of the first recipients of the $1 million Kavli Prize for his contributions to the field of astrophysics.
Schmidt, the Moseley Professor of Astronomy, Emeritus, at the California Institute of Technology, is one of seven recipients of the new Kavli Prize. He shares the astrophysics award with Donald Lynden-Bell, of Cambridge University, who was also a postdoc at Caltech from 1960 to 1962.
The seven pioneering scientists are being recognized for transforming human knowledge in the fields of nanoscience, neuroscience, and astrophysics. The prize was established through a partnership between the Norwegian Academy of Science and Letters, the Kavli Foundation, and the Norwegian Ministry of Education and Research.
Schmidt and Lynden-Bell are honored for their contributions to understanding the nature of quasars. In making their award, the members of the Kavli Astrophysics Prize Committee said, "Maarten Schmidt and Donald Lynden-Bell's seminal work dramatically expanded the scale of the observable universe and led to our present view of the violent universe in which massive black holes play a key role."
In 1963, using the 200-inch Hale Telescope on Palomar Mountain, Schmidt studied the visible-light spectrum of quasar 3C273. He discovered that it had a very high redshift, which meant it was moving away from Earth at 47,000 kilometers per second. Examination of the spectrum of another quasar revealed a motion double that of 3C273. Schmidt calculated that these objects lay beyond our galaxy, and he immediately realized that they must be emitting not only far more energy than our sun, but hundreds of times more energy than the entire Milky Way galaxy, which contains 10 billion stars. It was later determined that this enormous energy comes from a volume no larger than the size of our own solar system. Subsequent investigations of the evolution and distribution of quasars led Schmidt to discover that they were more abundant when the universe was younger.
"I'm delighted with the award. It is in particular a most pleasant surprise after so many years," Schmidt says. "After all, it's been 45 years since I found the red shift in quasar 3C273."
Schmidt was the executive officer for astronomy at Caltech from 1972 to 1975, the chair of the Division of Physics, Mathematics and Astronomy for the following three years, and then served as the last director of the Hale Observatories from 1978 to 1980. Despite being named an emeritus professor 12 years ago, he has continued his research, working to find the redshift beyond which there are no quasars.
Schmidt's fellow Kavli Prize recipient in astrophysics, Lynden-Bell, is honored for his ideas that the enormous energy of quasars arises from frictional heating in a gaseous disk of material rotating around giant black holes. The prediction that quasars are found at the centers of galaxies was later confirmed by high-resolution observations with the Hubble Space Telescope.
The Kavli Prizes focus on the science of the greatest physical dimensions of space and time, the science of the smallest dimensions of systems of atoms and molecules, and the science of the most complex systems, especially living organisms. Dedicated to the advancement of science for the benefit of humanity, the Kavli Foundation supports scientific research, honors scientific achievement, and promotes public understanding of scientists and their work. Fred Kavli, a Norwegian-born physicist, business leader, inventor, and philanthropist, moved to the U.S. shortly after receiving his college degree in physics and started a company that became one of the world's largest suppliers of sensors for aeronautic, automotive, and industrial applications. He created the Kavli Foundation in 2002, and has since funded the establishment of 15 research institutes worldwide, including the Kavli Nanoscience Institute at Caltech.
This year's Kavli Prize winners are the first to receive the award in a biennial event that will be celebrated in Fred Kavli's native city, Oslo. The prizes will be presented by HRH Crown Prince Haakon at an award ceremony in Oslo Concert Hall on September 9. For more information on the prizes and recipients, please visit http://www.kavliprize.no/