skip to main content
Caltech

Algebraic Geometry Seminar

Tuesday, February 2, 2016
4:00pm to 5:00pm
Add to Cal
GIT characterizations of Harder-Narasimhan filtrations
Alfonso Zamora Saiz, Lecturer AY-Math, Mathematics, CSU Channel Islands,
We will discuss constructions of moduli spaces in algebraic geometry by using Geometric Invariant Theory (GIT). When performing such constructions we usually impose a notion of stability for the objects we want to classify and another notion of GIT stability appears, then it is shown that both notions coincide. For an object which is unstable there exists a unique canonical filtration, called the Harder-Narasimhan filtration. On the other hand, GIT stability is checked by 1-parameter subgroups by the classical Hilbert-Mumford criterion, and it turns out that there exists a unique 1-parameter subgroup giving a notion of maximal unstability in the GIT sense. We show how to prove that this special 1-parameter subgroup can be converted into a filtration of the object and coincides with the Harder-Narasimhan filtration, hence both notions of maximal unstability are the same. We will present the correspondence for the moduli problem of classifying coherent sheaves on a smooth complex projective variety. A similar treatment can be used to prove the analogous result for many other moduli problems: pairs, Higgs sheaves, rank 2 tensors, quiver representations and constellations.
 
For more information, please contact Pablo Solis by email at [email protected] or visit http://www.its.caltech.edu/~pablos/seminars.html.