Analysis Seminar
We investigate a micro-scale model of superfluidity derived by Pitaevskii in 1959 to describe the interacting dynamics between the superfluid and normal fluid phases of Helium-4. This system consists of the nonlinear Schr\"odinger equation and the incompressible, inhomogeneous Navier-Stokes equations, coupled to each other via a bidirectional nonlinear relaxation mechanism. The coupling permits mass/momentum/energy transfer between the phases, and accounts for the conversion of superfluid into normal fluid. We prove the existence of solutions in $\mathbb{T}^d$ $(d=2,3)$ for a power-type nonlinearity, beginning from small initial data. Depending upon the strength of the nonlinear self-interactions, we obtain solutions that are global or almost-global in time. The main challenge is to control the inter-phase mass transfer in order to ensure the strict positivity of the normal fluid density, while obtaining time-independent a priori estimates. We compare two different approaches: purely energy based, versus a combination of energy estimates and maximal regularity. The results are from recent collaborations with Juhi Jang and Igor Kukavica.