skip to main content
Caltech

Analysis Seminar

Wednesday, October 30, 2024
12:00pm to 1:00pm
Add to Cal
Linde Hall 387
Instantaneous continuous loss of regularity for the SQG equation
Wojciech Ożański, Department of Mathematics, Florida State University,

The issue of loss of regularity of unique solutions to the 3D incompressible Euler equations is an important open question of fluid mechanics, and is closely related to the emergence of turbulence. We will discuss recent results regarding loss of regularity of solutions of the 2D and 3D Euler equations, and of the surface quasi-geostrophic equations (SQG), which is a well-established 2D model equation of the 3D Euler equations. We will discuss a result of continuous-in-time loss of Sobolev regularity of solutions to the SQG equation. Namely, given $s\in (3/2,2)$ and $\varepsilon >0$, we will describe a construction of a compactly supported initial data $\theta_0$ such that $\| \theta_0 \|_{H^s}\leq \varepsilon$ and there exist $T>0$, $c>0$ and a local-in-time solution $\theta$ of the SQG equation such that $ \theta (\cdot ,t )$ belongs to ${H^{s/(1+ct)}}$ and does not belong to any other ${H^\beta }$, where $\beta > s/(1+ct)$. Moreover $\theta$ is continuous and differentiable on $\R^2\times [0,T]$, and is unique among all solutions with initial condition $\theta_0$ which belong to $C([0,T];H^{1+\alpha })$ for any $\alpha >0$.

This is the first result of this kind in incompressible fluid mechanics. It is also the first ill-posedness result in the supercritical regime which has compact support in space.

For more information, please contact Math Department by phone at 626-395-4335 or by email at [email protected].