Bioengineering Lecture
Genome sequencing projects have revealed that eukaryotic and prokaryotic organisms universally possess a huge number of uncharacterized enzymes. The functional annotation of enzymatic pathways thus represents a grand challenge for researchers in the genome era. To address this problem, we have introduced chemical proteomic and metabolomic technologies that globally profile enzyme activities in complex biological systems. These methods include activity-based protein profiling (ABPP), which utilizes active site-directed chemical probes to determine the functional state of large numbers of enzymes in native proteomes. In this lecture, I will describe the application of ABPP and complementary proteomic methods to discover and functionally annotate enzyme activities in mammalian physiology and disease. I will also present competitive ABPP platforms for developing selective inhibitors for poorly characterized enzymes and discuss ongoing challenges that face researchers interested in assigning protein function using chemoproteomic methods.