skip to main content
Caltech

Caltech Mixed-Signal, RF and Microwave Seminar

Friday, May 17, 2013
4:00pm to 5:00pm
Add to Cal
Moore B280
Nonlinear Radio Frequency Integrated Circuits
Hossein Hashemi, Associate Professor, Department of Electrical Engineering, University of Southern California (USC),

 

 Nonlinearity is often regarded as nuisance in information processing and integrated circuits. Even in fundamentally nonlinear systems such as self-sustained oscillators, "excessive" nonlinearity is commonly ignored or intentionally subsided. There are plenty of examples in physics and engineering where nonlinearity, when judiciously exploited, offers additional and/or improved capabilities when compared to linear or weakly nonlinear systems. In this talk, I will cover a few examples of exploiting nonlinearity in radio frequency integrated circuits.

The first example covers self-sustained oscillators that utilize a nonlinear resonator. Resonator nonlinearity affects the dynamics and stochastics of self-sustained oscillators. In fact, recent experiments demonstrate improvements in oscillator phase noise where the nonlinearity of a nano-resonator is exploited properly. I will cover systematic formulation, analysis, design, and experimental verification of self-sustained oscillators that utilize a nonlinear miniature high-quality resonator. Specifically, I will demonstrate 1.5 GHz CMOS oscillators that uses a high-Q Film Bulk Acoustic Resonator (FBAR) to achieve a record jitter performance of < 10 fs.

The second example covers (extremely nonlinear) switching power amplifiers at millimeter-waves. It is well known that switching power amplifiers can offer higher power efficiency (reaching 100% in the limit) due to the non-overlapping current and voltage waveforms across the device. I will demonstrate that, proper switching of SiGe Hetero-junction Bipolar Transistors (HBT) enables increasing the voltage and current swings, leading to higher output power, in addition to achieving high power efficiency. I will also present generalized stacked architectures of SiGe HBTs, operating in switching mode (Class E), that achieve high power and efficiency at mm-waves. Specifically, 40-45 GHz power amplifiers with output power exceeding 23 dBm (200 mW), without power combining, and Power Added Efficiency (PAE) reaching 35%, utilizing the aforementioned concepts will be presented.

 

For more information, please contact Michelle Chen by email at [email protected] or visit http://ee2.caltech.edu/calendar/index.html.