skip to main content
Caltech

Caltech/UCLA/USC Joint Analysis Seminar

Tuesday, May 17, 2022
2:00pm to 3:00pm
Add to Cal
Online and In-Person Event
Two Analogues of the Euclidean Spherical Maximal Function on Heisenberg Groups
Rajula Srivastava, Department of Mathematics, University of Wisconsin-Madison,

UCLA, room MS 6221

We shall discuss sharp (up to end points) $L^p\to L^q$ estimates for local maximal operators associated with dilates of two different surfaces on Heisenberg groups. The first is the ``horizontal sphere" of codimension two. The second is the Kor\'anyi sphere: a surface of codimension one compatible with the non-isotropic dilation structure on the group but with points of vanishing curvature. We shall examine the geometry of these surfaces in light of two different notions of curvature and compare their effect on the estimates for the corresponding maximal operators. The Heisenberg group structure will play a crucial role in our arguments. However, the theory of Oscillatory Integral Operators will be central despite the non-Euclidean setting. We shall also discuss two new counterexamples which imply the sharpness of our results (up to endpoints). Partly based on joint work with Joris Roos and Andreas Seeger.

For more information, please contact Math Department by phone at 626-395-4335 or by email at [email protected].