Chemical Engineering Seminar
Understanding how millions of cells work together to build living tissues represents a central challenge in tissue engineering. Here I describe our work to understand the protein-based molecular machines that cells use to sense and transduce mechanical force at cell-cell and cell-matrix adhesions. We used a single-molecule optical trap assay to determine a probable mechanism by which cells sense mechanical stretch at cell-cell contacts, a physical cue that is thought to be central in controlling tissue growth and patterning. In related work, we developed fluorescent molecular tension sensors to visualize the nanometer-scale structures that link cells consistent with a collective model for cellular force generation and force sensing. These observations, together with those from projects investigating the biophysical basis for the sense of touch and cell motility in three-dimensional matrices, suggest deep commonalities in how cells may detect and respond to mechanical cues in a wide variety of physiological circumstances.