skip to main content
Caltech

IQIM Postdoctoral and Graduate Student Seminar

Wednesday, October 6, 2021
11:00am to 12:00pm
Add to Cal
Online Event
Realization of real-time fault-tolerant quantum error correction
Ciarán Ryan-Anderson, Honeywell Quantum Solutions,

Joint IQIM/AWS Seminar Series

Abstract: Correcting errors in real time is essential for reliable large-scale quantum computations. Realizing this high-level function requires a system capable of several low-level primitives, including single-qubit and two-qubit operations, mid-circuit measurements of subsets of qubits, real-time processing of measurement outcomes, and the ability to condition subsequent gate operations on those measurements. In this work, we use a ten qubit QCCD trapped-ion quantum computer to encode a single logical qubit using the [[7,1,3]] color code, first proposed by Steane. The logical qubit is initialized into the eigenstates of three mutually unbiased bases using an encoding circuit, and we measure an average logical SPAM error of 1.7(6)×10−3, compared to the average physical SPAM error 2.4(8)×10−3 of our qubits. We then perform multiple syndrome measurements on the encoded qubit, using a real-time decoder to determine any necessary corrections that are done either as software updates to the Pauli frame or as physically applied gates. Moreover, these procedures are done repeatedly while maintaining coherence, demonstrating a dynamically protected logical qubit memory. Additionally, we demonstrate non-Clifford qubit operations by encoding a logical magic state with an error rate below the threshold required for magic state distillation. Finally, we present system-level simulations that allow us to identify key hardware upgrades that may enable the system to reach the pseudo-threshold.

Join by zoom https://caltech.zoom.us/j/81483492264

For more information, please contact Marcia Brown by phone at 626-395-4013 or by email at [email protected].