Mechanical and Civil Engineering Seminar
The humanoid robot DURUS was unveiled to the public in the midst of the DARPA Robotics Challenge (DRC). While the main competition took place in the stadium, DURUS took part in the Robot Endurance Test with the goal of demonstrating locomotion that is an order of magnitude more efficient than existing bipedal walking on humanoid robots, e.g., the ATLAS robot utilized in the DRC. During this accessible public demonstration of humanoid robotic walking, DURUS walked continuously for over 2½ hours covering over 2 km—all on a single 1.1 kWh battery. At the core of this success was a methodology for designing and realizing dynamic and efficient walking gaits on bipedal robots through a mathematical framework that utilizes hybrid systems models coupled with nonlinear controllers that provably result in stable locomotion. This mathematical foundation allowed for the full utilization of novel mechanical components of DURUS, including: efficient cycloidal gearboxes (allowing for almost lossless transmission of power) and compliant elements at the ankles (absorbing the impacts at foot-strike). Through this combination of formal controller design and novel mechanical design, the humanoid robot DURUS was able to achieve the most efficient walking ever recorded on a humanoid robot. This talk will outline the key elements of the methodology used to achieve this result, demonstrate the extensibility to other bipedal robots and robotic assistive devices, e.g., prostheses, and consider the question: when will the humanoid robots of science fiction become science fact?