skip to main content
Caltech

PhD Thesis Defense

Wednesday, November 11, 2020
1:00pm to 2:00pm
Add to Cal
Online Event
Linear codes with Constrained Generator Matrices
Hikmet Yildiz, Graduate Student, Electrical Engineering, California Institute of Technology,

Designing good error correcting codes whose generator matrix has a support constraint, i.e., one for which only certain entries of the generator matrix are allowed to be nonzero, has found many recent applications, including in distributed coding and storage, linear network coding, multiple access networks, and weakly secure data exchange. The dual problem, where the parity check matrix has a support constraint, comes up in the design of locally repairable codes. The central problem here is to design codes with the largest possible minimum distance, subject to the given support constraint on the generator matrix. When the distance metric is the Hamming distance, the codes of interest are Reed-Solomon codes, for which case, the problem was formulated as the "GM-MDS conjecture". In the rank metric case, the same problem can be considered for Gabidulin codes. This thesis provides solutions to these problems and discusses the remaining open problems.

Join Zoom Meeting

https://caltech.zoom.us/j/82679021432?pwd=ZThhR3hnVTVBTVp4UVQwYlZ0SVRhUT09

Meeting ID: 826 7902 1432

Passcode: 767258

For more information, please contact Tanya Owen by email at [email protected].