TAPIR Seminar
Join Zoom Meeting
https://caltech.zoom.us/j/92271559087?pwd=TFQ2YVk2N0FpSzhlR3JvZlFENTUyQT09
Large reservoirs of cold (~ 10^4 K) gas exist out to and beyond the virial radius in the circumgalactic medium (CGM) of all types of galaxies. Photoionization modeling suggests that cold CGM gas has significantly lower densities than expected by theoretical predictions based on thermal pressure equilibrium with hot CGM gas. In this talk, I will demonstrate the impact of cosmic ray physics on the formation of cold gas via thermal instability, using a suite of 3D magnetohydrodynamic simulations to follow the evolution of thermally unstable gas in a gravitationally stratified medium. Cosmic ray pressure can help counteract gravity to keep cold gas in the CGM for longer, thereby increasing the predicted cold mass fraction and decreasing the predicted cold gas inflow rates. Efficient cosmic ray transport, by streaming or diffusion, redistributes cosmic ray pressure from the cold gas to the background medium, resulting in cold gas properties that are in-between those predicted by simulations with inefficient transport and simulations without cosmic rays. Cosmic rays can significantly reduce galactic accretion rates and resolve the tension between theoretical models and observational constraints on the properties of cold CGM gas.