skip to main content
Caltech
Fires burning in Greater Los Angeles area have had significant impact on the Caltech's community and surrounding areas. For information and resources for members of the Caltech community, go to https://www.caltech.edu/fire.

High Energy Physics Seminar

Monday, January 25, 2021
4:00pm to 5:00pm
Add to Cal
Online Event
Generalizing the Double-Copy: Masses and Higher-Derivatives
Callum Jones, UCLA,

The double-copy is a remarkable multiplicative structure on the landscape of quantum field theories, best known by the canonical example: "gravity = (Yang-Mills)^2". Over several decades of exploration, numerous additional, non-gauge theory, examples of "colorful" models with a consistent double-copy have been identified. Despite this progress, the rules-of-the-game are not completely understood, and the full extent of the landscape of double-copy compatible models remains largely unknown. In this talk I will describe recent attempts to generalize the double-copy to models incorporating massive states and higher-derivative interactions. One of the key results is the observation that color-kinematics duality is not a sufficient condition for the double-copy to produce a physical scattering amplitude. We find that in addition, imposing a "minimal rank" condition on the zeroth copy scattering amplitudes removes all non-physical singularities. I will present two primary applications of this result. The first is to models with massive states, in this context the rank condition translates into a set of linear constraints on the mass spectrum, and as a consequence I will demonstrate a no-go result for attempts to realize massive gravity as a double-copy. The second application is to incorporating higher-derivative corrections to massless models. I will show how the most general, minimal rank, zeroth copy can be efficiently "bootstrapped" order-by-order in a derivative expansion. The result is a vast generalization of the string theory KLT formula that allows for the double-copy of the most general set of higher-derivative corrections to Yang-Mills, encompassing and extending previous attempts.  

https://caltech.zoom.us/j/85343130214?pwd=enlSdzJsUUo2dFl6RGJJTFZia2NqQT09.